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ABSTRACT 

Log -linear models provide methods for the 
time -trending of qualitative attributes on the 
basis of information contained in crosstabula- 
tions obtained at successive points in time. 
Simple time -trend models are presented whereby 
the logits 

oit 
of some polytomous variable with 

i = 1,...,I classes are linked to time scores 
t = 1,...,T by means of a polymonial equation 

fit = Ai 
Bilt + + t 

T -1 
of order 

T -1 or less. Once a suitable model is found, 
the predicted logit for any time t* is obtained 
by substituting t* for t in the final model. 

Formulae for the standard error of interpolated 
or extrapolated logits (or proportions) are 
developed such that the variance of a prediction 
depends upon the distance of that prediction 
from the mean of the original time scores. These 
models, except in some special cases, require 
use of a Newton -Raphson type algorithm for maxi- 
mum likelihood estimation. Examples of varying 
complexity show the utility of these methods. 

Keywords: Log -linear models; Newton -Raphson 
algorithm. 

1. Introduction 

In this paper log- linear models are used for 
the time -series analysis of qualitative attri- 
butes. Attribute data observed over time are 
common in social research, perhaps the most 
common example being the repeated cross -sec- 
tional survey. Time -series of qualitative 
attributes form much of the empirical base for 
the study of "social indicators" [13, 15], and 
so we can expect this type of data to become 
even more common in the future. The reasons 
for analyzing such data are evidently two -fold. 
The first objective is usually to parameterize 
the time -trend actually exhibited over the 
interval spanned by observed data. Statistical 
models are necessary for this task, since our 
understanding of the past is usually conditional 
on sample (rather than population) characteris- 
tics. Hopefully, an economical interpretation 
of the past will emerge from the analysis of 
only a few parameters of well chosen models. 

A second objective of time series analysis, 
closely related to the first, is the fore- 
casting or "prediction" of the future. Our 
expectations for the future are often conditioned 

upon information about the past. Social and 
economic policy, by its very nature oriented to 
the future, is most wisely formulated when 
explicit forecasts (based on past experience) 
are readily at hand. Time series methods which 
satisfy these needs are not to our knowledge 
now available. For attribute or frequency data 
the more usual time- series methods [e.g., 4, 14] 
are not strictly appropriate. These other 
methods can, however, motivate the corresponding 
methods suited for attribute data. The methods 
which we propose are applied to labor force data 
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from the Current Population Survey of the United 
States [5]. 

2. Time -Trend Models Using Polynomial Equations 
for the Logits 

Let us begin by describing the data which will 
be analyzed here. Table 1 classifies the civil- 
ian population of the United States aged 14 and 
over into four mutually exclusive and exhaustive 
categories based upon sample data from the March 
Current Population Survey for years 1969 -1973. 
These data are easily seen to comprise a 4 x 5 

crosstable. The comumn variable will be denoted 
by a "T," referring explicitly to the Time 
variable, and has categories t = 1,...,5. The 

scores attaching to the categories of the T 
variable could just as well be rearranged to -2, 
-1, 0, +1, +2, but in either alternative the 
ordered and interval nature of the T variable is 
to be taken into account. 

For simplicity we shall regard each of the 
five time -period observations as simple random 
samples (i.e., multinomial samples), but actually 
these data derive from a very complicated samp- 
ling scheme. The methods presented here can be 
extended to deal with sampling arrangements 
different from simple random samples. The reader 
is referred to Haberman [10, 11] for the proper 
extensions to some situations of possible inter- 
est. Note should be taken in Table 1 of the 
marginals of the.T variable, f t, 

since these are fixed by sampling design. Accept- 
able models for these data (i.e., models which 
will generate the frequencies in Table 1) will 
need to fit this marginal in order not to violate 
the sampling design. 

The attribute under investigation here pertains 
to the labor force status of persons. These 

statuses (i.e., categories) will be unfamiliar to 
some, so we make brief comment about them here. 

We let U refer to the labor force status variable 
in the row of Table 1, and we denote its classes 
by i = 1,...,4. Category 1 refers to "adequate 
employment," and was actually defined as a 
residual category left over after the measurement 
of categories 2, 3, and 4. Category 4 refers to 
"economic inactivity," and comprises all persons 
who are not seeking out work at the time of the 
survey. In most respects, this status is similar 
to the "not -in- labor- force" category widely used 
in federal statistics. Category 3 denotes a sta- 
tus which we shall refer to as "economic under- 
employment," and comprises all persons who are 
unemployed, part -time unemployed, or working full 
time but receiving sub -standard wages. Category 
2 refers to persons whose work wages are satis- 
factory, but whose skill level (measured by years 
completed education) is considerably greater than 
the mean skill level (educational level) of other 

workers in similar occupations. The labor force 
statuses contained in Table 1 are not now part of 
the federal government's system of labor force 
statistics; even the nomenclature chosen to 



describe the categories is different from that 
of customary labor force reports, A detailed 
justification for this scheme of measurement is 

presented in [5]. It will suffice here to note 
that Table 1 is an example of time series attri- 
bute data, and data of this kind appear often in 
social research. Even though the column vari- 
able T (perhaps specified as an "independent" 
variable) is quantitative, the row variable U 
(a "dependent" variable) is qualitative. 

To begin a time series analysis of Table 1 we 
first consider a simplified table derived by 
combining the 1st and 4th categories of U and 
the 2nd and 3rd categories of U. The result is 

Table 2 where now the dichotomous row variable 
U has category 1 denoting "not underemployed" 
and category 2 denoting "underemployed." 

The usual time series models begin with a 
quantitative variable y, scores for which are 
observed at t = 1,...,T points in time. The 
across time variation in y is then "explained" 
by certain kinds of linear models [e.g., 14]. 

If represents the vector of observations, the 

standard approach is to consider a model 

yt = t = 1,...,T, 

where the et are assumed to be normally distri- 
buted error terms with constant variance and 
zero autocorrelation. The functional form f in 
those applications with which we are familiar is 

a linear function chosen in such a way to ensure 
that the et have regular properties. E.g., 

autoregressive- moving average models (ARMA 
models) reduce to certain variations on the lin- 
ear model shown above. When a suitable function 
f can be found to purge the error term of un- 
desirable properties, the forecast of y into the 
future for any t' > T is given as the projection 
along the trend curve fit to the original obser- 
vations. Of course, we could also use the 
estimated function f to provide interpolated 
values of y for points t' < T, if there were 
sufficient reason to believe that f could be 
used to predict the trend in y for all points 
interior to the T points actually observed in 
the data. The forecasted score (or the inter- 
polated score) yt, will represent an "optimal" 

prediction to the extent to which the chosen 
function f has ensured regular properties to 
the disturbances, and to the extent to which 
time -trend observed in the past can serve as a 

prediction of scores which are not yet known. 

One kind of time series model appropriate for 
the attribute data in Table 2 is based upon a 
trending of logits. Let the observed frequen- 

cies in Table 2 be denoted as fit and the ex- 

pected frequencies given some model as 
Fit, i = 1, 2; t 1,...,T. First consider a 

model for the U x T cross -classification whereby 
the expected logits = log (Fit/F2t) are 

related to the time scores t = 1,...,T by the 
following polynomial equation: 
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= A + Blt + + BT 
-ltT -1 = 

t(T -1)' 
B, (2.1) 

where B' = (A, B1,...,BT -1) and t(T (1, 

t,...,tT -1). Equation (2.1) is a polynomial of 
degree T -1 linking the expected logits of U to 
the time scores, and it will be desirable to find 
models which fit the data and in which several of 
the Bi are zero. Models of this kind are con- 

sidered by Bock [2, Ch. 8], Goodman [9], and 
Haberman [10, 11], but by considering the time 
series nature of (2.1) we shall obtain some new 
results. In this approach to the analysis of 
time series we have made weaker assumptions about 
the distribution of the dependent variable (i.e., 
it is binomial) and can appeal to maximum likeli- 
hood methods generally associated with log- linear 
models. 

Given (2.1) above, a forecast for the logits 
of U for time points t' > T is straightforward. 
First we find a suitable representation of the 
time trend in our observed table. Suppose this 
model is 

0t = t (P)' 

where are subsets 
respectively. The predicted 

't, = t' 

T + 1, T + 2,..., (2.3) 

where is the same subset of t(T that 
appeared in (2.2) with the modification that t' 

replaces t. The vector is the sample 

estimate of The predicted proportions in 
the i -th category of U at t' are given by 

Plt' 

(2.2) 

of t(T 
-1), B(T -1), 

logfit is thin merely 

= exp(ot,)/(1 + exp (0t,) 

P2t' = 1 - (2.4) 

If it were of interest to interpolate values of 
t, for t' interior to the T sample points, then 

(2.3) and (2.4) are modified accordingly. 

To estimate the model for the expected frequen- 
cies implied by (2.1), a model for the logits, 
several different strategies present themselves. 
For the column variable T a set of T -1 orthogonal 
polynomials are required to define the vector 
basis of variable T. Direct products of these 
with the simple deviation contrast vector (1/2, 
-1/2) for U define the appropriate interaction 
terms. For the case where the categories of T 
are equally spaced, standard computer programs 
such as the ECTA program of Goodman and Fay and 
the MULTIQUAL program of Bock and Yates [3] pro- 
vide the necessary orthogonal polynomials. For 
cases where the number of time scores T is of 
moderate size, these may also be found in common 
statistical tables (e.g., [81. For cases where 
the time scores are not equally spaced, the ortho- 
gonal polynomials can be obtained from formulae 



reported by Bliss [1, pp. 2 -27]. For the satur- 
ated model with zero degrees of freedom (where 
all of the Bi in (2.1) may be nonzero), the para- 

meters can be calculated directly from formulae 
to be presented later. For the unsaturated model 
obtained by setting all of the Bi at zero, a 

model equivalent to the usual. independence 
'hypothesis for the ,two -way table, the constant 
A can also be estimated by elementary. means. 
For various other models obtained.. from (2.1) by 
setting some (but not all) of the Bi at zero, 

the implied models for the frequencies are not 
equivalent to models based upon the fitting of 
marginals, and so computational methods for 
determining the Fit and the Bi different from 

the iterative proportional scaling algorithm 
have to be employed. 

A Newton -Raphson algorithm can be used to 
find the maximum likelihood estimate of the Fit 

and Bi of (2.1). The approach suggests itself 

by considering the log- linear model for the 
frequencies implied by the linear model for the 
logits reported in (2.1). Letting u = (log F11, 

log F21,..., log F2T)' we find that this model 

is 

u = X5 (2.5) 

where u is 2T X 1, X is 21 X 2T (in the satur- 
ated model), and is the 2T X 1 vector of 
coefficients. For various unsaturated models 
corresponding to (2.2), (2.5) will be modified 
by replacing the X matrix of contrasts by a 
corresponding 2T X (T + P) matrix of contrasts. 
The vector of logits 

($1, 
is obtained 

by premultiplying u in (2.5) by a matrix C with 
elements 

-1 = 1, 
C. 

= -1, and all other 

= O. That is, 

0 Cu. 

From (2.1) we find that 

= A + + + BT- it1T 
-1 

A + B1t2 + + BT-1t2T-1 

A + B1tT + + BT-1tT 
T-1 

(2.6) 

= ZB, (2.7) 

implying -that B in (2.1) is given simply by 

B = Z -1Cu 

Z -1C X a. (2.8) 

For unsaturated models corresponding to (2.2) Z 

will be of order T X p, but (2.8) will nonethe- 
less provide the maximum likelihood estimate of 
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B(p) if u is a vector of maximum likehihood esti- 
mates. Equation (2.8) makes explicit some of 
the formulae which appear in Haberman [11], and 
shows how the coefficients in (2.1) can be esti- 
mated from computer output (e.g., MULTIQUAL out- 
put) providing X . 

_The -variance of a:.predicted logit is 

easily.seen to be 

Var (0t,) = Var (b(P)) t(P), (2.9) 

a formula familiar from regression analysis. 
Note that in (2.9) the t vector is composed of 
powers of powers of t', regardless of the value 
of t' (i.e., regardless of whether t' is an 

observed time score or an unobserved time score). 
Furthermore, the formula in (2.9) allows the 
variance of the predicted logit to depend on the 
distance of the prediction from the mean of 

the observed time scores, unlike some other 
asymptomatic variance formulae which might be 

used here. From (2.8) we have = Z -1 C X 

where the Z and X matrices are defined appro- 
priately, and so 

Var (b(P)) Z -1 C X (Var ( )) 

C' Z' -1 (2.10) 

As shown in C10, 11], Var (5) =(X' D (F) X) -1 

where D(F) is the diagonal matrix with expected 
frequencies on the diagonal. Finally, the 
variance of predicted proportions in (2.4) can 
be approximated by application of the delta 
method. This shows how the polynomial time - 
trend model may be estimated and how the pre- 
cision of a forecast can be obtained from it. 

In sum, the approach to the time series ana- 
lysis of qualitative attributes suggested here 
seems well suited to the interpolation of logits 

(or proportions) between time points actually 
sampled, and to the extrapolation or forecasting 
of logits (or proportions) into the future. 
While this approach has not to our knowledge 
been previously applied, there is little that 
is new in the log- linear time trend models sug- 
gested here. 

As a first example consider the data in Table 
2 where the 1973 sample is ignored. We consider 
the problem of forecasting the distribution in 
1973 from the time trend 1969 -1972. For simpli- 
city, we assign scores -1.5, -.5, +.5, +1.5 to 
the four time- periods included. This choice of 
time scores only affects the value of the con- 
stant term A in (2.1). In Table 3 the degrees 
of freedom and the fit of various models are 
presented. The model Ho where = a, equivalent 

to an hypothesis of independence-between U and T, 
.produces a_likelihood-:ratio Chi-square of 491.79 
on 3 df, contradicting this simplest time -trend 
hypothesis. Introducing a linear term produces 
model H1 where 0t = a + b1 t. With 

L2(H1) of 13.69 on 2 df we have achieved a 

remarkable improvement in fit with addition of 



only a single parameter. On such a large sample 

size as this (total n over 400,000), such a fit 
is certainly acceptable, even though the descrip- 
tive level of significance is approximately .001. 

We find by application of formulae presented 
earlier that a = 1.7344 and b1 = -.0844, the 

latter term reflecting the decrease in economic 
opportunity 1969 -1972. 

We :find when using 111 and substituting the 

value t' 2.5 (corresponding to 1973) in -the 

equation = 1.7344 -.0844t that 
$1973 = 

1.5264, 

implying a predicted proportion underemployed in 
1973 of .1785. The observed logit and the ob- 
served proportion underemployed in 1973 were 
1.5270 and .1642, respectively. (See Table 4.) 
We see that by virtue of the upturn in the 

economy during 1973 we have overestimated the 
number of underemployed persons by 1.42 %. 

Model H2 in Table 3 corresponds to = 

a + blt + b2t2, and we see that this model does 

not significantly reduce Chi- square. Model H3 

corresponds to a linear and a cubic (but not a 
quadratic) term in the model. With 

L2(H3) = .84 on 1 df we see that this model fits 

the data very well indeed. For H3 we find a 

1.7377, b1 = -.1325, and b3 = .0235. The pre- 

dicted logit for 1973 is 1.5974, considerably 
worse than our first prediction. For these data 
the standard error of the forecasted proportion 
underemployed in 1973 would be virtually nil. 
Given the time -trend 1969 -1972, the upturn in 
the economy during 1973 was totally unexpected. 

Table 5 presents log- linear time trend models 
for the full 2 x 5 crosstable in Table 2. The 
Chi -square of 69.90 for the model with a linear 
time -trend parameter would be acceptable for most 
purposes. We see that addition of a quadratic 
term adds substantially, however, to the good - 
ness -of -fit. 

We now consider models for the 4 x 5 cross - 
table presented earlier in Table 1. Models for 
this table are generalizations of the one con- 
sidered in (2.1), taking account of the poly - 
tomous U (dependent) variable. Models of the 
form 

= log (Fit /F4t) 

= A. + B t + + 

i = 1, 2, 3, (2.11) 

are appropriate when U is unordered. To esti- 

mate models of_the kind in (2.11) we generate 
ahe:matrix X of contrasts in: :5) by again 
using -;orthogonal: polynomials for the T, variable 
and-using-deviation contrasts implied by :(2.11) 
for the U variable (see [3]). By following a 

hierarchy principle we might focus upon a subset 
of the wide range of models open to our choice 
where if Bik = 0 then Bik, = 0 for k' > k, 
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i = 1, 2, 3. The fit of some of these models is 

presented in Table 6. By restricting our atten- 
tion to models of the kind in (2.11), interpola- 
tion or extrapolation is also straightforward, 
and can be carried out with the aid of the for- 
mulae presented earlier. We see from Table 6 
that the model with only the linear terms B11, 

B21' B31' 
is adequate.(accounting for 79% of the 

variation in the data), but also-that the inclu- 
sion of quadratic terms contributes .in a substan- 
tial.way to- explaining time trend. 

3. A Model Allowing Autocorrelation of the 
Logits 

The models considered in the previous section 
linked the observed logits (or predicted logits) 
to scores reflecting the spacing of the time 
variable. For purposes of interpolation those 

models appear satisfactory. However, for pur- 
poses of forecasting (or extrapolation) beyond 
time points actually observed, the previous 
models can lead to unacceptable results. For 

example, in the analysis of the 2 x 4 crosstable 
presented in Tables 2 and 3, we found that 

4t = 1.7374-.0844t provided an acceptable summary 

of observed time trend. If we were to entertain 
this model seriously for purposes of forecasting, 
then the predicted logit for t' = 20.6 

(= 1.7374/.0844) would be zero, and the predicted 
distribution of the attribute would be a degen- 

erate one. In this section we briefly consider 
a model which does not suffer this difficulty. 

This model is motivated by the simple auto - 
correlation model associated with the analysis 

of time series of quantitative variables [4], and 
suggests an alternative way of viewing time series 
attribute data. 

A model where the expected logit at time t 

depends only on the observed logit at time t -1, 

-1 
is the "first order autocorrelation of 

logits" model, viz., 

(3.1) 

where p is the " autocorrelation" parameter. As in 

the usual time series approach to (3.1) (where the 

corresponding quantitative scores are substituted 
for the logits), the initial observation at t = 1 

is considered as a given, and so we find that 
01 

= 
implying further that 

= F11, f21 = 

F21. The model in (3.1) thus has some character- 

istics of a "quasi- independence" model, since the 

relation in (3.1) only pertains to a subset of 

the cells in the complete table. A least squares 
procedure, which in this case provides estimates 

almost equivalent to maximum likelihood, produced 

the results presented in Table 7. The model in 

(3.1) has an L2 of 43.14 on two degrees of free - 

dom, and-provides an estimate of p of .9549. The 

predicted logit for 1973 is closer to the observed 
logit than was the case for the models considered 

in Section 2. (Cf. Table 4.) The advantage of 

model (3.1) is that forecasts of for finite 

t' will result in nondegenerate predicted distri- 



butions of the attribute. Because of this 

property these models deserve further considera- 

tion. Models of the kind in (3.1) can be modi- 

fied to deal with certain other kinds of time 

series models (e.g., moving average models). We 

do not go into those details here. [Tables 5, 6 

and 7 are available unnn frnm the 
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Table 1. Labor Force Status Over Time, Civilian Population Aged 14 and 

Over, 1969 -1973. 

Source: March Current Population Survey 

YEAR 

Labor Force Status 1969 1970 1971 1972 1973 

1. Adequate 48017 45299 44373 42811 42350 

Employment (44.2 %) (43.6 %) (41.8 %) (41.7 %) (42.1 %) 

2. Mismatch 5640 5560 6219 6363 6766 

(5.2 %) (5.4 %) (5.9 %) (6.2 %) (6.7 %) 

3. Economic 8971 9184 10571 10592 9748 

Underemployment (8.3 %) (8.9 %) (10.0 %) (10.3 %) (9.7 %) 

4. Not -in- Labor -Force 45887 43705 44956 42939 41685 

Total 

(42.3 %) (42.1 %) (42.3 %) (41.8 %) (41.5 %) 

108,515 103,748 106,119 102,705 100,549 
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Table 2. 2 X 5 Cross -Classification of Labor Force Status Over Time. 

Source: Table 1 

1969 1970 

YEAR 

1971 1972 (1973) 

Not Underemployed 93904 89004 89329 85750 (84035) 

Underemployed 14611 14744 16790 16955 (16514) 

Total 108,515 103,748 106,119 102,705 (100,549) 

á/ Not Underemployed = Adequately Employed or Not -in- Labor -Force. 

b/ Underemployed = Mismatched or Economic Underemployed 

Table 3. Log- Linear Time -Trend Models for the 2 X 4 Table (Ignoring 1973) 

Model 

Likelihood -Ratio 
Chi -Square 

Goodness -of- 
Fit Chi- Square 

Degrees 
of Freedom 

Ho: B1 = B2 = B3 = 0 491.79 491.12 3 

H1: B2 = B3 = 0 13.69 13.71 2 

H2: B3 = 0 12.69 12.95 1 

H3: B2 = 0 .48 .48 1 

Table 4. Observed Logits Log and Expected Logits Log 

From Model H1. 

1969 1970 1971 1972 (1973) 

Observed 1.8605 1.7978 1.6715 1.6209 (1.6270)12/ 

Expected 1.8640 1.7796 1.6952 1.6108 (1.5264)x/ 

Expected logits obtained from = 1.7374 

Proportion underemployed in 1973 = .1642. 

- .0844t. 

Predicted proportion underemployed in 1973 = .1785. 
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